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Abstract--This paper analyses a queueing model with three servers, namely a main server and two identical 
regular servers. The main server not only serves customers but also provides consultation to the regular 
servers with a preemptive priority over customers. The customersat the main server undergo interruptions 
during their service. The consultations are limited by an upper  bound on the  number of interruptions to a 
customer at the main server. The arrivals to the system and requirement of consultation follow independent 
Poisson processes. The service times at the main server and the regular servers are assumed to follow 
mutually independent phase type distributions. The stability of the system is established. Some performance 
measures are studied numerically. 
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Introduction[1]  
In a multi-server queueing  system providing same type of services, some of the  servers 
(trainees or less experienced ones) need clarifications or help frequently. So an 
experienced server provides timely clearances together with serving customers. These 
are seen to occur in banks (with the manager in addition to  providing service to 
customers,   helping other bank staff in their work also), hospitals (where the chief 
physician treats patients and clarifies the doubts of the fellow doctors), super markets, 
etc. 
Chakravarthy [4]  introduced  a multi-server queueing system  with consultations. There 
are ‘c’ servers. One of these ‘c’ servers are referred to as the main server and the others 
as the regular servers. The main server provides preemptive priority over customers to 
the regular servers on FIFO basis for consultation.  Thus the service of the customer at 
the main server will be interrupted when a consultation occurs. The service of the 
interrupted customer at the main server will be resumed after all consultations are 
completed. The regular servers receive any number of consultations during the service 
of a customer.  The service times are exponentially distributed with mean  at the main 
server and    at the identical regular servers. Queueing system with consultation has 
many applications in daily life. One such example is given in  the above mentioned work. 
 
Krishnamoorthy et.al [10] discussed a single server queueing model with interruptions 
to the server controlled  by a finite number of interruptions  and  a super clock. When 
the number of interruptions already befell to the server reaches the upper  bound,  no 
further interruptions are allowed  to the customer being served.    A super clock is also 
there to limit the number of interruptions. 
 
Queues with service interruptions was first studied by White and Christie [16] with 
exponentially distributed interruption duration. At the end of an interruption the service 
will be resumed. Some of the earlier papers which analyse queueing models with service 
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interruptions, assuming general distributions for the service and interruption 
durations, are by Gaver [7],  Keilson  [9], Avi-Izhak and Naor [1] and Fiems et. al [6]. 
 
In the present paper we consider a multi-server queueing system equipped with three 
servers. Here  customers arrive according to a Poisson process. An arriving customer 
enters into service immediately if at least one server is free, else  joins a queue. The 
customer will be served by the main server whenever the main server and at least one 
of the regular servers is free. If both the regular servers are idle and the   main server is 
busy,  then  the customer will approach   any one of the regular server  with probability 

. 

 
The main server offers consultation to the regular servers whenever it is necessary. 
Requirement of consultation arises according to a Poisson process with rate θi,   where  
i is the number of  busy   regular servers, i = 1,2. When both the regular severs need 
consultation, a queue is formed for consultation  and it is provided in FIFO basis.  In 
order to distinguish the regular servers, we denote them 1 and  Â2.  Duration of 
consultation follows exponential distribution. After getting consultation, the regular 
servers  resume the services at the phases where they were suspended.  
 
The service of the customer at the main server is said to be interrupted when the regular 
server requires a consultation.  The main server immediately attends the request for 
consultation by the regular server. The customer at the main server has to wait until 
the completion of the consultation to get his service completed. After the interruption 
(consultation) completion, the main server resume the service at the phase where it was 
suspended.   It is not fair to interrupt a customer at the main server infinitely many 
times. So we impose an upper bound M to the number of interruptions to the customer 
at the main server. If the number of interruptions already befell on the customer at the 
main server has reached M, then the main server will complete the present  service 
before attending any more consultation. At this time the regular server has to wait to 
get the consultation.     

 
Queueing Model[2] 

The arrivals to the system follows Poisson process with rate λ. The service times at the 
main and regular servers follow  independent  phase type distributions with  
representations  (α , U) and  (β, V) with number of phases  ‘p’  and ‘q’,   respectively.  

Note that  U0= -Ue  and  V0= -Ve.  M denotes the upper bound  of number of interruptions 
to the customer at the main server. Requirement of consultation follows Poisson process 
with rate θi,    if there are i  busy   regular servers, where i = 1,2. Duration of  consultation  
follows exponential distribution with parameter  ξ. 

Notations 

In this sequel, we use the following notations. 

(i)  = e’M+1 (1) Äα 

(ii) D = diag( IÄβ, βÄI),  D= [D O] 
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(iii) E = diag(IÄU,UÄI),  E= ,  E = [EÄI O]’, E=diag(EÄI, O), E = diag(E, O) 

(iv) F = diag(IÄUÄ β, UÄ βÄI), F = diag(F, O), F = diag(IÄU, UÄI) 

(v) J =  . 

 

Consider the queueing model X = {X(t),t ≥ 0}, where 

X(t)={N(t), S(t),L1(t), L2(t),P1(t),P2(t),T(t), P3(t)}. 

Here 

N(t) -  the  number of customers in the system 

Pi(t) - phase of the regular server R, i=1,2 

T(t) - number of interruptions already befell  to a customer at the main server 

P3(t) - phase of the main server. 

Here S(t) denotes the status of the servers at time t such that 

S(t) =   

The variable L1(t) appears only when N(t)=1  and  S(t)=  or N(t)=2  and S(t)=0.   

L1(t)={1,2}  according toÂ    or Â   is busy. 

Now consider the variable L2(t). 

If N(t)  ≥  1 and  S(t)={1,2},  

Then 

L2(t)=

Â Â

Â

Â

 

If N(t)  ≥ 1 and S(t) = 3,   then L2(t)  takes the same values {1,2,3,4} according to the 
above definition with `getting  consultation' is replaced by `waiting to get consultation.' 

If N(t) ≥ 3  and S(t)=4,  then  

L2(t)=1 (or 2), if Â  (or Â ) is waiting to get consultation after the present   
 interruption followed by the service completion  at the main server. 
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{X(t), t ≥ 0}  is a CTMC with state space  = {0} ∞  . 

The terms  's are defined as 

 = {(1, 0, k, l): 0 ≤ k ≤ M }  {(1, , j, l) ᴜ (1,1,j,l): 1 ≤ j ≤ 2}, 

  = {(2, 0, j, l, k, n) : 0 ≤ k ≤ M, 1 ≤ j ≤ 2}  {( 2, , l, m) (2, 1, j, l, m):  1 ≤ j ≤ 4} {(2, 
2, j, l, k, n): 1 ≤  j ≤ 2, 0 ≤ k ≤ M-1} {(2, 3, j, l, n):   1 ≤ j ≤ 2}, 

and for i  

 = {(i, 0, l, m, k, n): 0 ≤ k ≤ M}  {(i, 1, j, l, m): 1 ≤ j ≤ 4}     
  {(i, 2, j, l, m, k, n): ≤ j ≤ 2,0 ≤  k ≤  M-1}  {(i, 2, j, l, m, k, n):  3 ≤  j ≤  4, 0 
≤ k ≤ M-2} {(I, 3, j, l, m, n): 1 ≤ j ≤ 4}  {(i, 4, j, l, m, n):  1 ≤ j ≤ 2},  where    1 ≤  l, 

m ≤ q and 1 ≤ n ≤ p. 

The infinitesimal generator matrix Q is given by 

Q=      (1) 

Here ,   and   are square matrices of order ;  and  are square matrices of 
orders  and , respectively. , , , ,  and  are matrices of orders 1 X ,   

  X ,    X , K1  X 1,   X   and   X , respectively, where

,    and   . 

The block matrices are defined as follows: 

,
Ä

Ä , 
Ä

 

′,                ,  

′,                          , 

= ,        = , where  

 = diag( Ä  + Ä ,       = ′Ä Ä , 

 = Ä ,                            =  , 

 = 
Ä Ä

,          = Ä Ä ′Ä ′  , 

= Ä ′  ,             = Ä Ä  , 
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 = Ä Ä Ä , 

= 
′Ä Ä Ä Ä

, 

 = Ä ′ ,   = Ä Ä  

=  V  V Ä U - 2 ,   = ′Ä Ä ′Ä Ä , 

= 
Ä Ä

,   = diag (H2, O) – ξ + Ä ,  = 
Ä Ä

Ä , 

 = ,   = Ä Ä Ä Ä , 

 = 
Ä Ä

. 

 

 

Here 

 = diag ( Ä ) – ξ 
Ä

Ä
Ä , 

 =
Ä Ä

 = diag(H2, O) Ä  - Ä U + , 

=  ξ Ä  . 

Steady state analysis[3] 

In this section we perform the steady-state analysis of the queueing model under study. 
We first establish the stability condition of the queueing system. 

3.1 Stability condition 

Let π denotes the steady-state probability vector of the generator matrix  

.  

That is,         (2) 

The LIQBD description of the model indicates that the queueing system is stable (see, 
Neuts [13] ) if and only if    

  .        (3) 
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That is, the rate of drift to the left has to be higher than that to the right. The vector   
cannot be obtained explicitly in terms of the parameters of the model, and hence stability 
condition is known only implicitly.   Define the traffic intensity  as 

 =         (4) 

Note that the stability condition in (3)  is equivalent to < 1. We will discuss the impact 

of the input parameters of the model on the traffic intensity in Section 5. 

 

3.2 Steady State Probability Vector 

Since the model studied as a QBD process, its steady-state distribution has a matrix 

geometric solution under the stable condition. Assume that the stability condition is 

satisfied. Let denotes  the steady state probability vector of the  generator Q given in 

(1).  

That is , 

 ;  1.                   (5) 

Partitioning as  

( , ………), 

we see that, under the assumption that the stability condition (2) holds, the sub-vectors 

,  j ≥ 4   are obtained as (see, Neuts[13] ) 

,  j ≥ 4,         (6) 

where  is the minimal non-negative solution of the matrix equation  

.                      (7)                               

Knowing the matrix  the vectors , ,  and  are obtained by solving the boundary  

equations 

 

 

                   (8) 

 

The normalizing condition of (5) is  

                 (9) 

Once the rate matrix R is obtained, the vector can be computed by exploiting the special 

structure of the coefficient matrices. We can use the iterative formulas (see Neuts [13]) 

for , with an initial value , which converges to  if 
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 Performance Measures [4]   

In this section we list a number of key system performance measures to bring out 
the qualitative aspects of the model under study. These are listed below along with their 
formulae for computation. Towards this end, we further partition the vectors  as     

, , , 

and , ,  for   ≥ 3.  

Note that  is a scalar,  are vectors of dimension 2q;  is a vector of 

dimension ;  ,   , , ,  for   ≥ 3 are vectors of dimensions  

, , , , , , , , , respectively.   

Now we compute some performance measures as follows: 

1. Expected number of customers in the system 
  ES = ∞  

2. Expected number of customers in the queue 

  EQ = ∞∞ . 
3. Effective rate of interruption 

 EI = ∞ . 

4. Fraction of time the main server is idle 
  . 
5.  Fraction of time the main server is busy serving a customer 

  
∞

 

6. Fraction of time main server is interrupted 

  
∞ . 

7. Fraction of time the first regular server is idle   
  . 
8. Fraction of time the first regular server is busy serving a customer 

 
∞

  

9. Fraction of time the first regular server is under consultation   
  ∞∞  

10. Fraction of time the first regular server is waiting to get consultation after 
 the present service at the main server 
  ∞  

11. Fraction of time first regular server is waiting to get consultation after the 
 present consultation 
  ∞  

12. Fraction of time first regular server is waiting to get consultation after the 
 present service at the main server  and consultation to the regular server 

  
∞  
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Numerical Examples [5] 

 
In this section we examine the effect of λ,  and  on various performance 
measures.Choose the following data so that the stability condition <1  is satisfied. Let 

U = ;  V = ;  α = [0.3   0.7]; β = [0.4   0.6]; ξ = 2; M = 3. 

 
Table 1: Effect of λ on various performance measures 
    = 3,   = 2 

 1 1.5 2 1.5 3 

 0.2161 0.3242 0.4322 0.5403 0.6483 

 1.1568 1.3054 1.6390 2.3727 3.9522 

 0.0157 0.0892 0.3201 0.9073 2.2726 

 0.0432 0.0956 0.1665 0.2542 0.3568 

 0.0121 0.0224 0.0317 0.0376 0.0386 

 0.0254 0.0566 0.0969 0.1421 0.1871 

 0.0227 0.0519 0.0936 0.1486 0.2170 

 
From table 1 we see that as λ increases the traffic intensity  increases as is to be 
expected.  The system is fed with more customers and so more customers are 
accumulated in the system and in queue. So ES and EQ increase. The main server has  
to serve more customers which results in an increase in .   As number of customers 
increases, effective rate of interruption to the main server EI and thus the fraction of 
time the main server stay in interrupted state   also increase. 
 
Table 2: Effect of  on various performance measures 
     λ = 3,   = 2 
 

 2 2.5 3 3.5 4 

 0.5407 0.5946 0.6483 0.7018 0.7549 

 2.2804 2.9499 3.9522 5.4581 7.7758 

 0.8050 1.3847 2.2726 3.5974 5.4917 

 0.2476 0.3029 0.3568 0.4078 0.4538 

 0.0488 0.0439 0.0386 0.0329 0.0270 

 0.2622 0.2453 0.2280 0.2107 0.1935 

 0.1514 0.1841 0.2170 0.2492 0.2790 
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We see from table 2 that as  increases,  EI  also grows faster  since it depends directly 
on .$ This results in a hike in .  So the main server gets lesser time to serve 
customers which  results in a decrease in .  As    increases the main server gets 
lesser time to be idle and so    decreases.  As a whole,  there is a rapid accumulation 
of customers in the system and in the queue, and hence ES and EQ increase. Since the 
effective service time (the sum of the time taken for  actual service completion and 
intermediate consultations) increases, the traffic intensity   will  increase. 

 
 
Table 3: Effect of on various performance measures 
     λ = 3,   = 2 
 

 2 3 4 5 6 

 0.5407 0.6258 0.6844 0.7271 0.7594 

 2.2804 2.7377 3.2558 3.8234 4.4300 

 0.8050 1.1914 1.6399 2.1378 2.6717 

 0.2476 0.2881 0.3245 0.3568 0.3852 

 0.0488 0.0446 0.0408 0.0375 0.0346 

 0.2622 0.2479 0.2346 0.2224 0.2113 

 0.1514 0.1844 0.2142 0.2406 0.2639 

 
From table 3 we see that as    increases EI increases since EI depends directly on  
and so  also increases. So the idle time  of the main server decreases.  Since the 
fraction of interrupted time of main server increases, the main server gets lesser time to 
serve customers and so      decreases. The accumulation of customers increases, 
since the time for the service completion of customers  increases. Thus both ES and EQ 
increase. Here also  increase. 
 

Concluding remarks and suggestions for further study 

In this paper we studied a three-server queueing model with consultations. Consultation 
is an important aspect which enhance the reliability of the services provided by the 
trainees by accepting timely advices and clarifications  from the experienced servers. We 
can extend this model to introduce a super clock to measure the total duration of 
interruption to a customer at the main server. It will be interesting to deal with a three 
server queue with different arrival processes to the main and the regular servers. Two 
different queues can be maintained to the  main and regular servers with a finite buffer 
at the main server. Then an optimum value of the buffer size can be evaluated.  
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